Package: TopicScore 0.0.1

TopicScore: The Topic SCORE Algorithm to Fit Topic Models

Provides implementation of the "Topic SCORE" algorithm that is proposed by Tracy Ke and Minzhe Wang. The singular value decomposition step is optimized through the usage of svds() function in 'RSpectra' package, on a 'dgRMatrix' sparse matrix. Also provides a column-wise error measure in the word-topic matrix A, and an algorithm for recovering the topic-document matrix W given A and D based on quadratic programming. The details about the techniques are explained in the paper "A new SVD approach to optimal topic estimation" by Tracy Ke and Minzhe Wang (2017) <arxiv:1704.07016>.

Authors:Minzhe Wang [aut, cre], Tracy Ke [aut]

TopicScore_0.0.1.tar.gz
TopicScore_0.0.1.zip(r-4.5)TopicScore_0.0.1.zip(r-4.4)TopicScore_0.0.1.zip(r-4.3)
TopicScore_0.0.1.tgz(r-4.4-any)TopicScore_0.0.1.tgz(r-4.3-any)
TopicScore_0.0.1.tar.gz(r-4.5-noble)TopicScore_0.0.1.tar.gz(r-4.4-noble)
TopicScore_0.0.1.tgz(r-4.4-emscripten)TopicScore_0.0.1.tgz(r-4.3-emscripten)
TopicScore.pdf |TopicScore.html
TopicScore/json (API)

# Install 'TopicScore' in R:
install.packages('TopicScore', repos = c('https://minzhew.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • AP - Associated Press data

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 1 scripts 126 downloads 5 exports 8 dependencies

Last updated 5 years agofrom:17fc161e3f. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 13 2024
R-4.5-winOKNov 13 2024
R-4.5-linuxOKNov 13 2024
R-4.4-winOKNov 13 2024
R-4.4-macOKNov 13 2024
R-4.3-winOKNov 13 2024
R-4.3-macOKNov 13 2024

Exports:error_Asimplex_disttopic_scorevertices_estW_from_AD

Dependencies:combinatlatticeMatrixquadprogRcppRcppEigenRSpectraslam